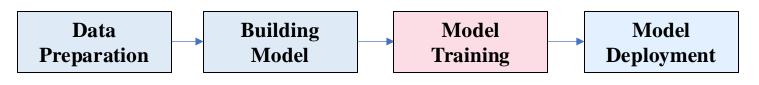
∇*Fuzz*

Fuzzing Automatic Differentiation in Deep-Learning Libraries

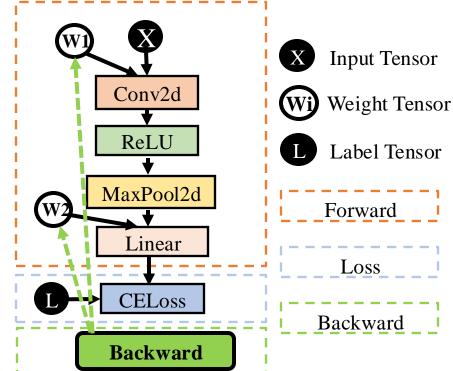
Chenyuan Yang, Yinlin Deng, Jiayi Yao Yuxing Tu, Hanchi Li, Lingming Zhang

Deep Learning (DL) Libraries

• DL pipeline



- DL libraries
 - Provide DL APIs for building models
 - Include an Automatic Differentiation (AD) engine for training the models



Automatic differentiation (AD) engine is a **crucial component** of any DL system.

Testing DL Libraries

Model level fuzzers

• API level fuzzers

Prior work mainly focuses on inference phase Testing the correctness of AD is still understudied

- Compare the gradient given by multiple libraries

Backward Pass

- Only covers reverse-mode AD
- Only covers 79 DL APIs with manual annotation
- Failed to detect any confirmed AD bug

¹Gu et al. "Muffin: Testing deep learning libraries via neural architecture fuzzing".

Bugs in AD engine

- Training a model is a resource-consuming process
- Imagine a bug in the middle... 💸

AD bugs may cause DL models to crash, fail to converge, and/or perform poorly in practical deployment, which is **fatal** for safety-critical applications.

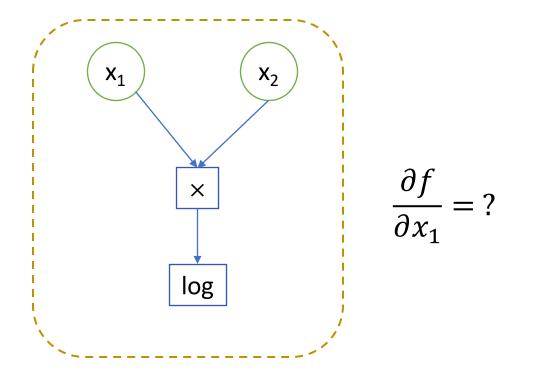
KLDivLoss is a very popular API, used in variational autoencoder (VAE), generative adversarial networks (GANs), recurrent neural networks (RNNs)

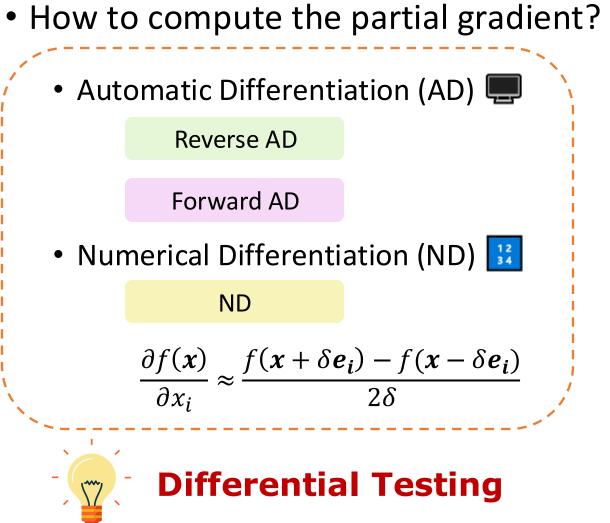
This bug¹ is found by us in PyTorch and labelled as

¹ https://github.com/pytorch/pytorch/issues/78867

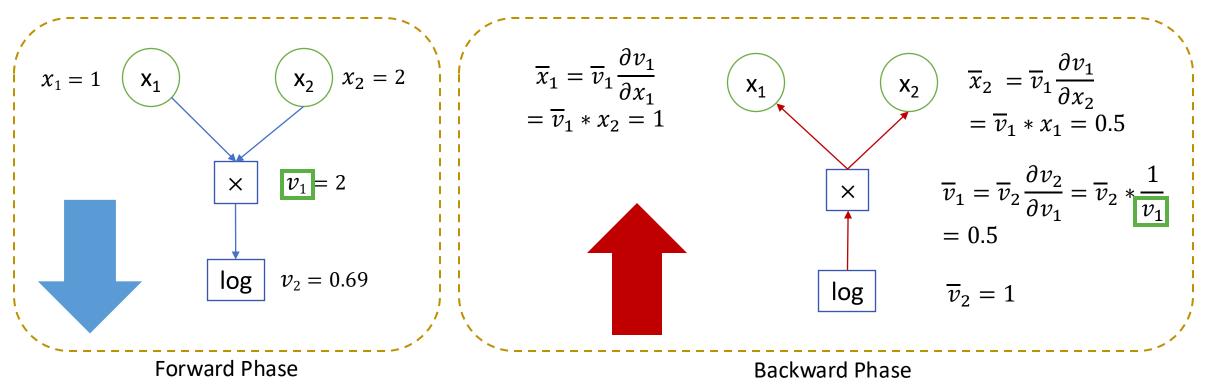
Differentiation

 $f(x_1, x_2) = \log(x_1 \cdot x_2)$



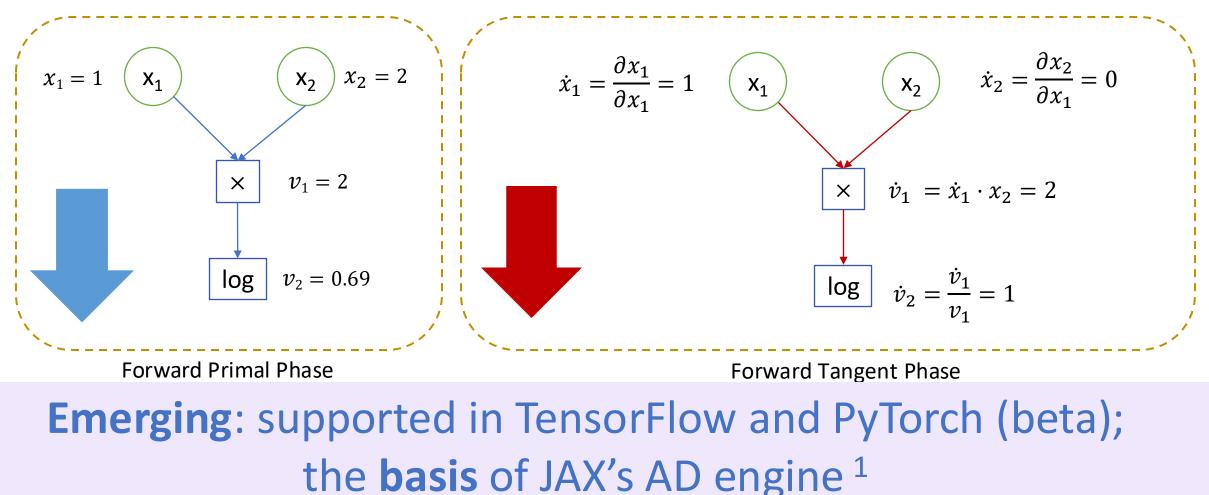


Reverse Mode AD



The **most common** AD mode in DL libraries Efficient for high-dim input and low-dim output

Forward Mode AD

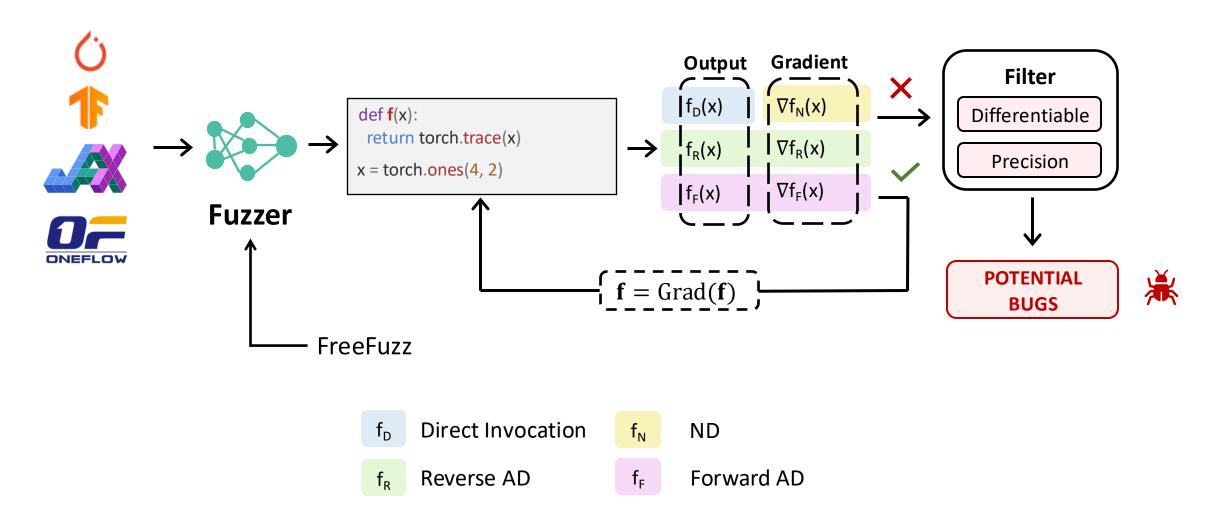


Efficient for high-dim output and low-dim input

¹ Radul et al. "You Only Linearize Once: Tangents Transpose to Gradients". POPL 2023.

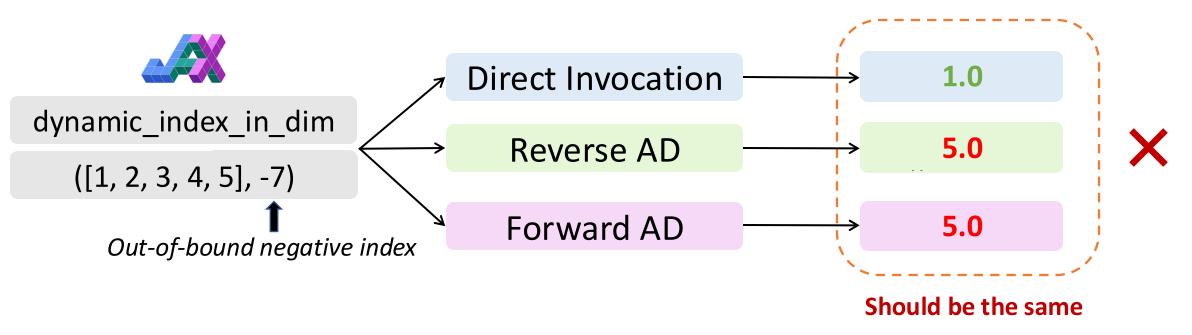
Framework of **∇**Fuzz

• The first approach specifically targeting the AD engine in DL libraries



Oracle: Output Check

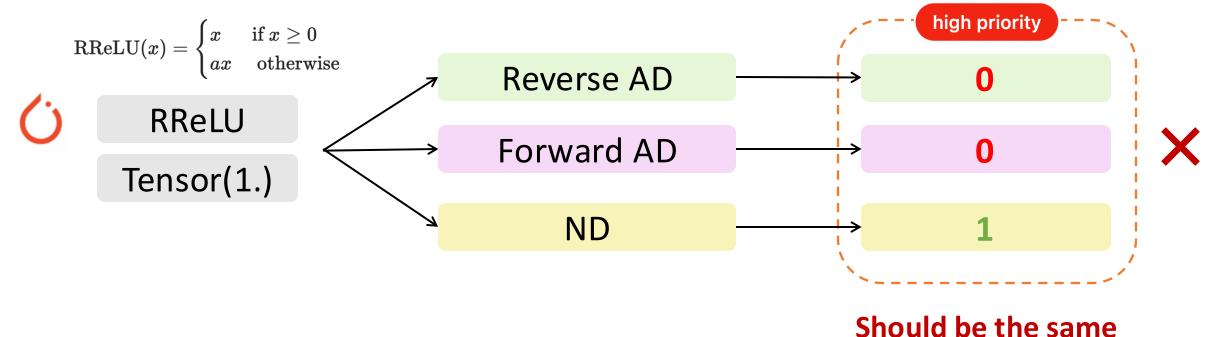
- Compare the output of invocation in different execution scenarios
 - When calculating the gradient, additional operations are incurred
 - Despite different implementation, the output should be the same



A bug detected by $\nabla Fuzz$ and fixed in JAX

Oracle: Gradient Check

- Compare the gradient in different execution scenarios
 - Reverse and forward modes are implemented differently
 - ND can help further check the correctness

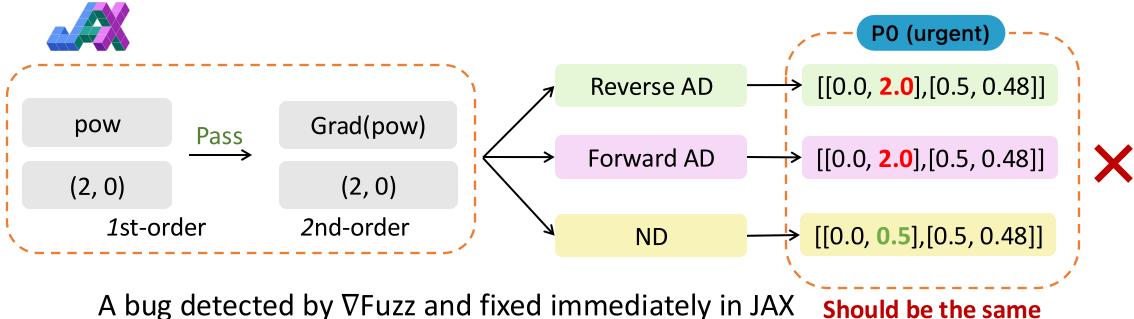


A bug detected by ∇ Fuzz and fixed in PyTorch

"a massive bug"

High-order Gradient

- VFuzz oracle can run on the *gradient function* of current function
 - It can test any order of gradient function



- A bug detected by VFuzz and fixed immediately in JAX **Should be the same**
- First- and second-order gradient computation are the most frequently used

Evaluation: Bug Detection

- VFuzz detects 173 bugs in total
 - 144 confirmed
 - 117 previously unknown
 - 107 are AD-related

Contributed **58.3% (7/12)** of all *high-priority AD bugs* for PyTorch and JAX during a two-month period.

None of the 107 AD-related bugs can be detected by existing work.

1:1	Total	Confirme		
Library		Unknown	Known	Won't Fix
PyTorch 🌔	80	62 (10)	15 (9)	3
TensorFlow 🏌	29	18 (0)	5 (2)	2
JAX 💦	34	20 (5)	3 (2)	1
OneFlow	30	17 (6)	4 (4)	0
Total	173	117 (21)	27(17)	6

Fuzzing Automatic Differentiation in Deep-Learning Libraries

Yinlin Deng

vinlind2@illinois.edu

Chenyuan Yang

cy54@illinois.edu

- VFuzz: first approach specifically targeting the AD engine in DL libraries, which is a crucial component of any DL system
 - Leverage different execution scenarios as test oracles to differentially test firstand high-order gradients
 - The core ∇Fuzz idea is general and can be used as oracle for future fuzzers at different levels (API or model levels)
- Detected 173 bugs for PyTorch(), TensorFlow(1), JAX-X, and OneFlow
 - with 144 confirmed, 117 previously unknown, and 38 already fixed
 - Contributed 58.3% (7/12) of all high-priority AD bugs for PyTorch and JAX during a two-month period

Back-up slides

Evaluation: Distribution of Confirmed Bugs

• Symptoms of confirmed bugs

-	Output	Gradient				
∇Fuzz		Total	1st-order	2nd-order		
PyTorch 🍅	31	46	44	2		
TensorFlow	4	19	17	2		
JAX 🍂	14	9	8	1		
	16	5	2	3		
Total	65	79	71	8		

More than half bugs are detected by inconsistent gradients.

Evaluation: Distribution of Confirmed Bugs

• Scenario distribution of confirmed bugs

Most of the bugs detected by ∇ Fuzz are related to our main target AD

∇Fuzz	Direct	All	Rev-Only	Fwd-Only	ND
PyTorch 🍅	11	64	33	9	2
TensorFlow	3	18	5	4	2
JAX 💦	3	20	3	1	0
	16	5	5	N/A	N/A
Total	33	107	46	14	4

Evaluation: FPR and Filter

		Gradient				
	Output	Diff+Precision	Diff	Precision	N/A	Total
Pytorch 🌔	19.3%	21.2%	25.5%	57.3%	61.9%	20.7%
Tensorflow 👎	8.3%	21.1%	34.8%	46.4%	53.1%	16.1%
JAX 🕺	11.1%	21.0%	58.1%	68.6%	78.2%	17.3%
OneFlow	12.5%	25.0%	25.0%	64.0%	64.0%	20.0%
Total	15.0%	21.3%	38.2%	60.6%	67.6%	19.3%
		With Filter			No Filter	

Our filtering strategies reduce FPR from 67.6% to 21.3%. Both filtering strategies are effective; differentiability is more helpful.

Example of Rejected Bug

- When x has the lowest precision floating datatype bfloat16
 - Inconsistent gradients by reverse and forward modes
 - It was rejected: "This is a consequence of the intended design of bfloat16. It is a worthwhile tradeoff for speed in deep learning contexts..."

$$sinc(x) = \frac{\sin \pi x}{\pi x}$$

x = array(-0.125, dtype=bfloat16)
RevGrad(jax.numpy.sinc, x) # 0.34375
FwdGrad(jax.numpy.sinc, x) # 0.375

Evaluation: Coverage Comparison

	PyTorch			TensorFlow			
	C++ Cov	Python Cov	Time	C++ Cov	Python Cov	Time	
F wa a F ware	70639	14579	2.14	36279	80220	2.04	
FreeFuzz	(21.1%)	(13.9%)	3.1h	(9.77%)	(30.1%)	3.9h	
∇Fuzz	86459	15042	25.7h	42284	88783	24.25	
	(25.8%)	(14.3%)		(11.4%)	(33.3%)	24.3h	
∇Fuzz	79808	14854	1.4h	37233	84848	2.04	
(seed only)	(23.4%)	(14.1%)		(10.0%)	(31.9%)	2.9h	

- Gradient computation is expensive (higher time cost).
- Gradient computation is important for system coverage:
 - VFuzz (seed only) have higher code coverage even with less time compared to FreeFuzz.

Evaluation: Coverage Comparison

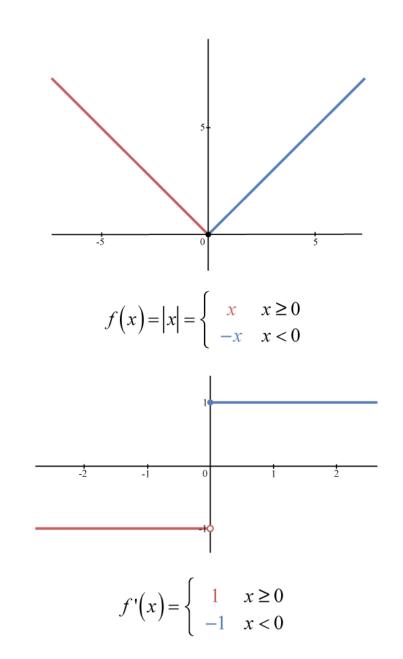
	C++ Coverage	Python Coverage	API Coverage	Time	Rev AD	Fwd AD	ND
∇Fuzz	41625 (11.21%)	88524 (33.24%)	1902	6.1h			
Muffin	36884 (9.94%)	78754 (29.57%)	79	6.8h			

∇Fuzz substantially outperforms Muffin in both code and API coverage, with slightly less execution time.∇Fuzz can thoroughly and automatically test the AD engines.

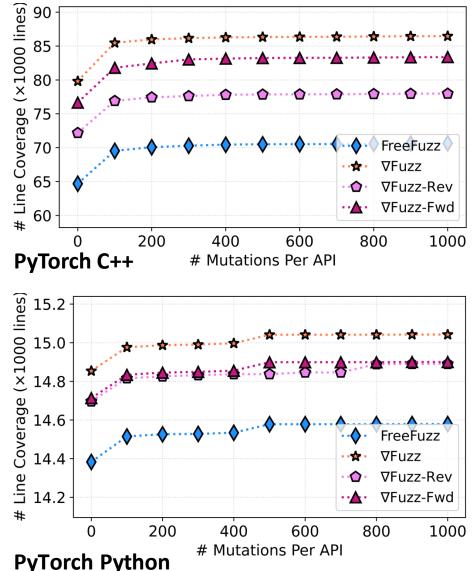
*For fair comparison, we run ∇Fuzz by setting the number of mutants for each API to 150

Filter: Differentiability

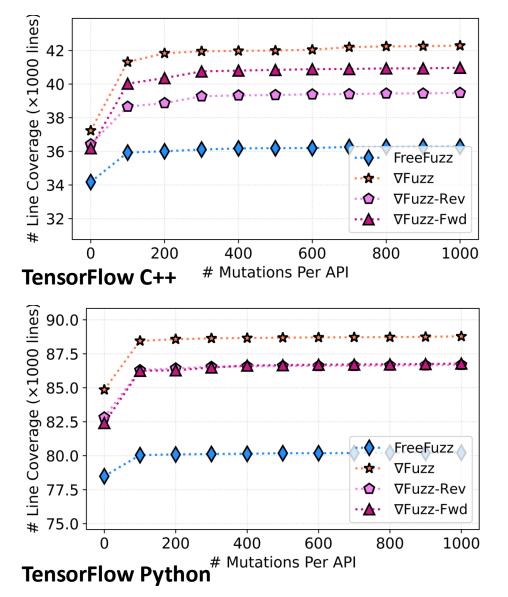
- Non-differentiable
 - The gradient at the non-differentiable point is *undefined*
- Differentiability
 - f is continuous at x, and
 - All partial derivatives of **f** exist in the neighborhood of **x** and are continuous at **x**
- Sample neighbors of x and compare the output and gradient
 - Leverage ND



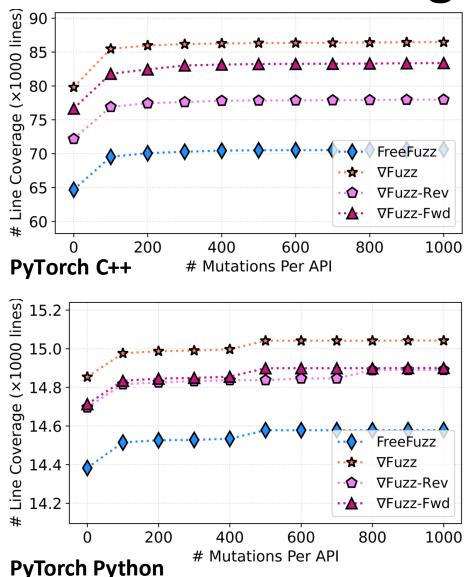
Evaluation: Coverage



∇Fuzz-Rev (disabling reverse mode AD)∇Fuzz-Fwd (disabling forward mode AD)



Evaluation: Coverage



∇Fuzz-Rev (disabling reverse mode AD)∇Fuzz-Fwd (disabling forward mode AD)

- For C++ coverage, ∇Fuzz outperforms FreeFuzz significantly on both PyTorch and TensorFlow, with an improvement of 22.4%/16.6%.
- ∇Fuzz has larger improvement on C++ coverage than Python
 - "Autograd is a hotspot for PyTorch performance, so most of the heavy lifting is implemented in C++"
- Disabling **Rev** will hurt the performance most
 - Reverse mode AD is the main technique and occupies a larger portion of the DL library implementation than the forward mode